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The Curl of a Vector Field 
 
Say ( ) ( )x r r∇ =A B . The mathematical definition of Curl is given 
as: 
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This rather complex equation requires some explanation ! 
 
*  ( )riB  is the scalar component of vector ( )rB  in the direction 
defined by unit vector îa  (e.g., ˆ ˆ ˆ, ,xa a aρ θ ). 
 
*  The small surface is∆  is centered at point r , and oriented 
such that it is normal to unit vector îa . 
 
*  The contour Ci is the closed contour that surrounds surface 

is∆ . 
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Note that this derivation must be completed for each of the 
three orthonormal base vectors in order to completely define 
( ) ( )r x r= ∇B A . 

 
Q:  What does curl tell us ? 
 
A:   Curl is a measurement of the circulation of vector 
field ( )rA  around point r .   
 

If a component of vector field ( )rA is pointing in the direction 
d  at every point on contour Ci (i.e., tangential to the contour).  
Then the line integral, and thus the curl, will be positive. 
 
If, however, a component of vector field ( )rA  points in the 
opposite direction (-d ) at every  point on the contour, the curl 
at point r  will be negative. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Likewise, these vector fields will result in a curl with zero value 
at point r :

0iB >  0iB <
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*  Generally, the curl of a vector field result is in another 
vector field whose magnitude is positive in some regions of 
space, negative in other regions, and zero elsewhere. 
 
*  For most physical problems, the curl of a vector field  
provides another vector field that indicates rotational sources 
(i.e., “paddle wheels” ) of the original vector field. 
 
For example, consider this vector field ( )rA : 
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If we take the curl of ( )rA , we get a vector field which points 
in the direction ẑa  at all points (x,y).  The scalar component of 
this resulting vector field (i.e., Bz(r )) is: 
 
 
 
  
 
 
 
 
 
 
 
The relationship between the original vector field ( )rA  and its 
resulting curl perhaps is best shown when plotting both 
together: 
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Note this scalar component is largest in the region near point 
x=-1, y=1, indicating a “rotational source” in this region.   This is 
likewise apparent from the original plot of vector field ( )rA . 
 
Consider now another vector field: 
 
 
 
 
 
 
 
 
 
 
 
 
Although at first this vector field appears to exhibit no 
rotation, it in fact has a non-zero curl at every point 
( ˆ( ) 4.0 zr =B a ) ! Again, the direction of the resulting field is in 
the direction ẑa . We plot therefore the scalar component in 
this direction (i.e., ( )zB r ):
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We might encounter a more complex vector field, such as: 
 
 
 
 
 
 
 
 
 
 
 
If we take the curl of this vector field, the resulting vector 
field will again point in the direction ẑa  at every point (i.e., 

( ) ( ) 0x yB r B r= = ).  Plotting therefore the scalar component of 
the resulting vector field (i.e., ( )zB r ), we get: 
 
 
 
 
 
 
 
 
 
 
 
Note these plots indicate that there are two regions of large 
counter clockwise rotation in the original vector field, and one 
region of large clockwise rotation.   
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Finally, consider these vector fields: 
 
 
 
 
 
 
 
 
 
 
 
The curl of these vector fields is zero at all points.  It is 
apparent that there is no rotation in either of these vector 
fields! 
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