The Curl of a Vector Field

Say $\nabla \mathbf{x} \mathbf{A}(\overline{\mathbf{r}}) = \mathbf{B}(\overline{\mathbf{r}})$. The mathematical definition of Curl is given

as:

$$\boldsymbol{\mathcal{B}}_{i}(\overline{\mathbf{r}}) = \lim_{\Delta \boldsymbol{s} \to 0} \frac{\oint_{\mathcal{C}_{i}} \boldsymbol{A}(\overline{\mathbf{r}}) \cdot \overline{\boldsymbol{d}\ell}}{\Delta \boldsymbol{s}_{i}}$$

This rather complex equation requires some explanation !

* $B_i(\overline{r})$ is the scalar component of vector $\mathbf{B}(\overline{r})$ in the direction defined by unit vector \hat{a}_i (e.g., $\hat{a}_x, \hat{a}_\rho, \hat{a}_\theta$).

* The small surface Δs_i is centered at point \overline{r} , and oriented such that it is normal to unit vector \hat{a}_i .

* The contour C_i is the closed contour that surrounds surface Δs_i .

r

â,

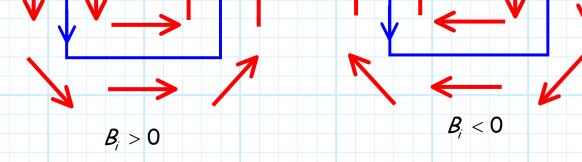
 ΔS_{i}

Q: What does curl tell us ?

A: Curl is a measurement of the circulation of vector field $\mathbf{A}(\overline{\mathbf{r}})$ around point $\overline{\mathbf{r}}$.

If a component of vector field $\mathbf{A}(\overline{\mathbf{r}})$ is pointing in the direction $\overline{d\ell}$ at every point on contour C_i (i.e., **tangential** to the contour). Then the line integral, and thus the curl, will be **positive**.

If, however, a component of vector field $\mathbf{A}(\overline{\mathbf{r}})$ points in the opposite direction $(-\overline{d\ell})$ at every point on the contour, the curl at point $\overline{\mathbf{r}}$ will be **negative**.



Likewise, **these** vector fields will result in a curl with **zero** value at point \overline{r} :

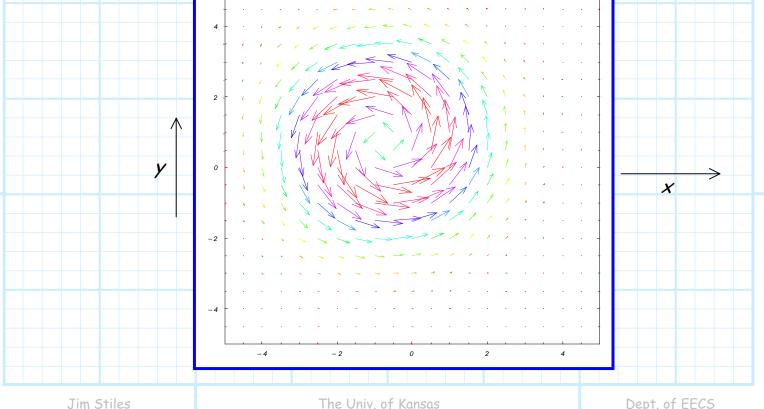
 $B_i = 0$

* Generally, the curl of a vector field result is in another vector field whose magnitude is positive in some regions of space, negative in other regions, and zero elsewhere.

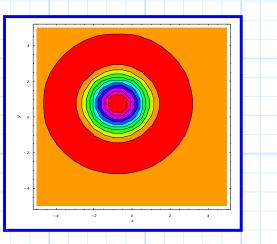
* For most physical problems, the curl of a vector field provides another vector field that indicates rotational sources (i.e., "paddle wheels") of the original vector field.

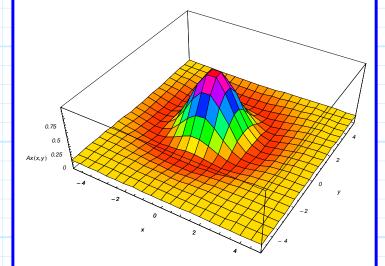
For example, consider this vector field $A(\bar{r})$:

 $B_i = 0$

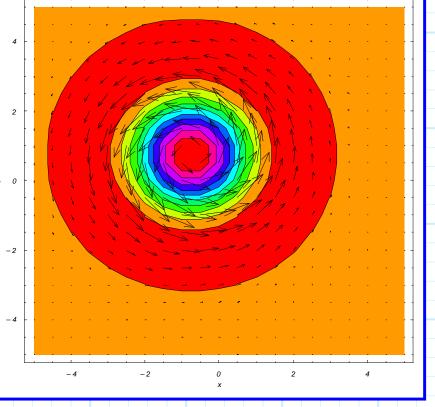


If we take the curl of $A(\bar{r})$, we get a vector field which points in the direction \hat{a}_z at all points (x,y). The scalar component of this resulting vector field (i.e., $B_z(\bar{r})$) is:





The relationship between the original vector field $\mathbf{A}(\bar{r})$ and its resulting curl perhaps is best shown when plotting both together:



X

Note this scalar component is largest in the region near point x=-1, y=1, indicating a "rotational source" in this region. This is likewise apparent from the original plot of vector field $A(\bar{r})$.

Consider now another vector field:

Although at first this vector field **appears** to exhibit no rotation, it in fact has a **non-zero** curl at **every** point $(\mathbf{B}(\overline{r}) = 4.0 \ \hat{a}_z)$! Again, the direction of the resulting field is in the direction \hat{a}_z . We plot therefore the **scalar** component in this direction (i.e., $B_z(\overline{r})$):

