The Curl of a Vector Field

Say VxA(r)=B(r). The mathematical definition of Curl is given
as:

PA(F)-dl
B(r)=lim &
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This rather complex equation requires some explanation !

* B (r) is the scalar component of vector B(r) in the direction
defined by unit vector q; (e.g., a,,a,,a,).

* The small surface As. is centered at point r, and oriented
such that it is normal to unit vector a.

* The contour C,is the closed contour that surrounds surface
AS..
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Note that this derivation must be completed for each of the
three orthonormal base vectors in order to completely define
B(r)=VxA(r).

Q: What does curl tell us ?

A: Curl is a measurement of the circulation of vector
field A(r) around point r.

If a component of vector field A(r)is pointing in the direction

d/ at every point on contour C, (i.e., tangential to the contour).
Then the line integral, and thus the curl, will be positive.

If, however, a component of vector field A(r) points in the

opposite direction (-d/) at every point on the contour, the curl
at point r will be negative.
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Likewise, these vector fields will result in a curl with zero value
at point r:
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* Generally, the curl of a vector field result is in another
vector field whose magnitude is positive in some regions of
space, negative in other regions, and zero elsewhere.

* For most physical problems, the curl of a vector field
provides another vector field that indicates rotational sources

(i.e., "paddle wheels" ) of the original vector field.

For example, consider this vector field A(r):




If we take the curl of A(7), we get a vector field which points
in the direction 4, at all points (x,y). The scalar component of
this resulting vector field (i.e., B{r)) is:

The relationship between the original vector field A(r) and its
resulting curl perhaps is best shown when plotting both
together:




Note this scalar component is largest in the region near point
x=-1, y=1, indicating a "rotational source" in this region. This is
likewise apparent from the original plot of vector field A(7).

Consider now another vector field:

e e

Although at first this vector field appears to exhibit no
rotation, it in fact has a non-zero curl at every point
(B(7)=4.0a,)! Again, the direction of the resulting field is in
the direction a,. We plot therefore the scalar component in
this direction (i.e., B,(r)):




We might encounter a more complex vector field, such as:

If we take the curl of this vector field, the resulting vector
field will again point in the direction a, at every point (i.e.,

B.(r)=8,(r)=0). Plotting therefore the scalar component of
the resulting vector field (i.e., B,(r)), we get:

Note these plots indicate that there are two regions of large
counter clockwise rotation in the original vector field, and one
region of large clockwise rotation.
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Finally, consider these vector fields:
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The curl of these vector fields is zero at all points. It is
apparent that there is no rotation in either of these vector

fields!
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